Red eléctrica

Una red eléctrica se considera lineal cuando \(v_s(\omega t)\) y \(i_s (\omega t)\) son senoidales.

La tensión de pico es mayor que el valor eficaz:

\[v_{pk} = \sqrt{2}v_{rms} \]

Un inductor retrasa \(\frac{\pi}{2}\) la corriente: \(\sin{(x+a)}\)

Un condensador adelanta \(\frac{\pi}{2}\) la corriente: \(\sin{(x-a)}\)

En trifásica hay tres fases:

  • Fase 1: \(\theta_1 = 0\). \(v_{s,1}(t) = \sqrt{2} V_{1,rms} \sin{(\omega t)}\)
  • Fase 2: \(\theta_2 = \frac{2\pi}{3}\). \(v_{s,2}(t) = \sqrt{2} V_{2,rms} \sin{\left(\omega t-\frac{2\pi}{3}\right)}\)
  • Fase 3: \(\theta_3 = \frac{4\pi}{3}\). \(v_{s,3}(t) = \sqrt{2} V_{3,rms} \sin{\left(\omega t-\frac{4\pi}{3}\right)}\)

Triángulo de potencias:

s

  • P: potencia activa = \(V_{rms}I_{rms} \cos{(\phi)} \) (kW)
  • Q: potencia reactiva (kWAR)
  • S: potencia aparente = \(V_{rms}I_{rms} \)  (kVA)

Factor de potencia:\( FP = \frac{P}{S} = \cos{(\phi)} \)

Tensión de fase y tensión de línea:

trifasica

La tensión de fase es la tensión que existe entre el neutro y una de las fases. En el dibujo \(V_{L_1}\).

La tensión de línea es la tensión que hay entre dos fases, en el dibujo \(V_{L_1, L_3}\). La tensión de línea puede escribirse como:

\[ V_{L_1, L_3} = V_{L_1} – V_{L_3}\]

En cuanto al módulo de la tensión de línea, este es mayor que la de fase:

\[ V_{L_1, L_3} = \sqrt{3} V_{L_1}\]

Una red equilibrada es aquella en que el desfase relativo entre fases es 0. Es decir, todas las fases tienen un desfase igual.

La potencia en una red equilibrada (\(\phi_1 = \phi_2 = \phi_3 = \phi\)) es:

\[ P_i = V_{RMS} I_{RMS} \cos{(\phi)} \]

\[ P = 3 P_i = 3 V_{RMS} I_{RMS} \cos{(\phi)} = \sqrt{3} V_{L_{RMS}} I_{RMS} \cos{(\phi)} \]

Además, la tensión de línea está desfasada 60º respecto a la de fase:

Fuente proyecto987

En caso de que la red sea desequilibrada (\(\phi_1 \neq \phi_2 \neq \phi_3\)):

Por cada fase tendremos una potencia activa (P) y aparente (Q):
\[ P_i = V_{i_{RMS}} I_{i_{RMS}} \cos{(\phi_i)} \]
\[ S_i = V_{i_{RMS}} I_{i_{RMS}} \]
\[ FP_i = \frac{V_{i_{RMS}} I_{i_{RMS}} \cos{(\phi_i)}}{V_{i_{RMS}} I_{i_{RMS}}} = \cos{(\phi_i)} \]

La potencia total será:
\[ P = \sum_i{P_i} \]
\[ Q = \sum_i{Q_i} \]
\[ S \neq \sum_i{S_i} \]
\[ S = \sqrt{P^2+Q^2} \]
\[ FP = \frac{P}{S} \]

Distorsión en redes no lineales

Una red se considera no lineal cuando \(v_{s}(\omega t)\) es senoidal y \(i_s(\omega t)\) no. Una señal periódica no senoidal puede expresarse como suma de diferentes componentes frecuenciales multiplos de la frecuencia fundamental, es decir, mediante su desarrollo en serie de Fourier (DSF).

\[ i_s(\omega t) = I_{s,0} + i_{s,1}(\omega t) + \sum_{k=2}^{+\infty} i_{s,k}(\omega t) \]

Podemos agrupar los términos como una componente de continua, una componente frecuencial y la suma de todos los armónicos:

\[ i_s(\omega t) = I_{s,0} + i_{s,1}\sin(\omega t – \phi_1) + \sum_{k=2}^{+\infty} i_{s,k}\sin(\omega t – \phi_k) \]

Donde la amplitud de la componente fundamental será \(I_{s,1} = \sqrt{2} I_{s,1~rms} \) y la de los armónicos: \( \left.I_{s,k}\right|_{k=2,3,…\infty} = \sqrt{2} I_{s,k~rms} \).

La distorsión de la corriente es igual a la diferencia entre la señal completa menos la componente fundamental:

\[ i_{s,dis}(\omega t) = i_s (\omega t) – I_{s,1}\sin(\omega t) = \sum_{k=2}^{+\infty} i_{s,k}\sin(\omega t – \phi_k)\]

El valor eficaz de una señal es:

\[ I_{s~RMS} = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} i^2_{s}(\omega t)~d\omega t}\]

La distorsión de una señal calculada como valor eficaz es:

\[ I_{s,dis~RMS} =\sqrt{I^2_{s~RMS} – I^2_{s,1 RMS}} \]

Y la distorsión armónica de una señal será la relación entre el valor eficaz de la distorsión y el valor eficaz de la componente fundamental. Dado que la distorsión de la señal puede ser mucho mayor que la componente fundamental, el THD puede tomar valores mayores a 1.

\[ THD = \frac{I_{s,dis~RMS}}{I_{s,1~RMS}} = \sqrt{\frac{I^2_{s~RMS}}{I^2_{s,1}}-1} \]

Si la red es lineal, la corriente tendrá la misma forma que la tensión. Como la tensión de senoidal, la corriente también lo será. Por tanto, la distorsión armónica de una red lineal es 0.

La potencia aparente es el producto de la tensión eficaz que entrega la red y la corriente eficaz que entrega la red.

\[ S = V_{s~rms} \cdot I_{s~rms} \]

La potencia activa es el producto de la tensión eficaz que entrega la red con la corriente eficaz del armónico fundamental de la corriente y con un factor de corrección debido al desfase entre la corriente y la tensión:

\[ P = V_{rms} I_{s,1~rms}\cos{\phi_1} \]

El factor de potencia (FP) de es la relación entre la potencia activa y la potencia aparente:

\[ FP = \frac{P}{S} = \frac{V_{rms}I_{s,1~rms}\cos{\phi_1}}{V_{rms} I_{s~rms}}=\frac{I_{s,1~rms}}{I_{s,rms}} \cos{\phi_1}=\underbrace{\frac{I_{s,1~rms}}{I_{s,rms}}}_{\text{Factor de distorsion}}\underbrace{\cos{\phi_1}}_{\text{Factor de desplazamiento}} \]

En el caso de ser un red trifásica, el factor de potencia es la media de cada una de las lineas:

\[ FP_{trifasica} = \frac{\sum_i FP_i}{3} \]

El THD también puede calcularse como:

\[THD = \sqrt{\left(\frac{\cos{\phi_1}}{FP}\right)^2-1}\]

Rectificadores monofásicos Line Conmutated

 

Rubén Sánchez Mínguez
IC design engineer en Analog Devices

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.