Coseno de la suma:

\[ \cos{(a+b)} = \cos{a} \cos{b} – \sin{a}\sin{b} \]

\[ \cos{(a-b)} = \cos{a} \cos{b} + \sin{a}\sin{b} \]

Seno de la suma:

\[ \sin{(a+b)} = \sin{a}\cos{b} + \sin{b}\cos{a} \]

\[ \sin{(a-b)} = \sin{a}\cos{b} – \sin{b}\cos{a} \]

Coseno del ángulo doble:

\[ \cos{2a} = \cos^2{a} – \sin^2{a}\]

Seno del ángulo doble:

\[ \sin{2a} = 2\sin{a}\cos{a}\]

Diferencia de senos:

\[ \sin{a} – \sin{b} = 2\cos{\frac{a+b}{2}}\cos{\frac{a-b}{2}} \]

Principios de magnetismo

Ley de Ampere: \( \int{H dl} = \sum{i} \)

Fuerza electromotriz: \(\epsilon = N \cdot i = l_m H \)

Ley de Faraday: en una espira se induce un flujo magnético contrario a la variación del flujo magnético que la atraviesa. Este flujo magnético opuesto induce una tensión \( v = – N \frac{d\phi}{dt} \)

En un material magnético, la fuerza electromotriz inducida depende del flujo que atraviesa el material magnético (\(\phi\)) y de su reluctancia (\(\mathfrak{R}\)), siendo la reluctancia la oposición al paso de flujo magnético.

\[ \epsilon = \phi \cdot \mathfrak{R} \]

phi-e

La reluctancia de un núcleo magnético depende de la longitud efectiva (cuanto más largo, más reluctancia), de su sección (cuanta más sección, menos reluctancia) y de su permeabilidad magnética (cuanto más conductivo, menos reluctancia). De esta manera podemos definir la reluctancia como:

\[ \mathfrak{R} = \frac{1}{\mu}\frac{l}{A} \]

De la misma manera que en un material eléctrico podemos definir la densidad de corriente como la corriente que pasa por un conductor por metro cuadrado (\( J = \sigma \cdot E \)), en un material magnético podemos definir la densidad de flujo magnético \( B = \mu \cdot H\), donde \(\mu\) es la permeabilidad magnética, definida como la capacidad de un material o medio para atraer y hacer pasar a través de él campos magnéticos. La densidad de flujo magnético se mide en Teslas (T).

b-h

Otro parámetro a tener en cuenta es el factor de inductancia \(A_L\). Tiene unidades de Henrios (H) y es la inversa de la reluctancia (\(\mathfrak{R}\)).

\[ A_L= \frac{1}{\mathfrak{R}} = \frac{\mu A}{l} \]

Existen 4 tipos de masas en un circuito.

  1. Masa de seguridad (tierra): es un conductor que absorbe todos los electrones que se le inyecten. Si no existe una toma a tierra propiamente dicha, se conectará al chasis del dispositivo o a cualquier área metálica grande capaz de absorber los electrones.
  2. Masa del circuito:
    1. Masa analógica: masa a la que están conectados todos los elementos analógicos
    2. Masa digital: masa para componentes como memorias o microprocesadores.
  3. Masa de entrada/salida (E/S): es una masa aislada de la del circuito en la que se conecta todos aquellos componentes que tengan una conexión con el exterior. Estos pueden cualquier conector (USB, Ethernet, etc.) o la alimentación propia del circuito.

A la hora de interconectar estas masas lo más conveniente es utilizar ferritas. De esa manera aseguramos que en continua el potencial eléctrico sea el mismo en todas las masas y mientras que haya un camino de alta impedancia a frecuencias altas. De esta manera, se filtrarán las posibles perturbaciones de alta frecuencia que se crean en los circuitos digital o también se filtrarán las señales interferentes procedentes del exterior a través de los conectores.

Un cable a alimentación o tierra no protege de descargas electroestáticas (ESD) porque la impedancia de un cable largo es inductiva. Las ESD tienen componentes espectrales de alta frecuencia, por tanto el cable a tierra o a alimentación constituye un camino de alta impedancia. Por este motivo, las ESD se quedarán dentro de los planos de masa y alimentación afectando a los componentes y no se derivarán.

 

  1. Por debajo de 70 ºC no hay apenas cambios en la vida útil de un componente, como norma general (puede haber componentes específicos que sí).
  2. Un test en una cámara climática no siempre es fiable debido al funcionamiento de la cámara. Se crea una circulación de aire caliente para calentar toda la cámara, pero esto puede hacer que el circuito se esté refrigerando por convección forzada. Por tanto, una vez alcanzada la temperatura deseada habría que parar el ventilador y comprobar que la temperatura del circuito no aumenta.
  3. Un disipador (heat-sink) de la misma área que el integrado que se quiere refrigerar no servirá de nada. De hecho, empeorará la refrigeración del componente al añadir una resistencia térmica adicional entre el encapsulado y el aire.
  4. Reducir la temperatura media de los componentes de un circuito no es una buena estrategia. Solo el 5% de los componentes de un circuito suele disipar calor, por lo que hay que concentrarse en bajar la temperatura de aquellos que realmente disipan. Un buen diseño tiende a disminuir la temperatura de ese 5% y a aumentar la del 95% restante.
  5. En las especificaciones de un ventilador se muestra el volumen de aire que es capaz de mover por minuto, normalmente expresado en CFM (cubic feet per minute, pies cúbicos por minuto). Sin embargo, hay que tener en cuenta la resistencia que ofrece aquello que se ponga delante del ventilador ya que esto hará que el flujo efectivo sea mucho menor. Dimensionar con un factor 2 para evitar problemas.
  6. Uno de los parámetros que dan los fabricantes es la resistencia térmica entre el silicio y el encapsulado \(R_{ja}\) ó \(\Theta_{jc}\). Sin embargo no es el parámetro más importante a la hora de realizar el diseño térmico del circuito, ya que otros factores como la posición de otros componentes que disipan calor o el área de PCB y cobre debajo del componente pueden tener mucha relevancia a la hora de determinar la temperatura del componente.
  7. Los disipadores tipo pin fin no son siempre mejores que los de extrusión. Cada uno tiene un propósito y se tiene que tener en cuenta a la hora de elegirlo. Por ejemplo, la dirección del aire si se utiliza un ventilador o la dirección ascendente del aire caliente.
  8. Para medir la temperatura de un componente deben pasar horas o incluso días para determinar de manera correcta su temperatura.
  9. El mejor diseño térmico es muy posible que sea el peor desde el punto de vista electrónico.

La temperatura ambiente máxima para la mayoría de dispositivos comerciales es de 70 ºC. En superficies metálicas, a partir de 60 ºC se producen ampollas en los dedos. Para el plástico o madera es a partir de 70-80 ºC. La temperatura de transición vítrea del FR4 es de 105-130 ºC por lo que puede comenzar a deformarse a partir de esta temperatura.

Es muy importante definir al principio del proyecto los objetivos térmicos del circuito para tenerlos presentes a lo largo de todo el proceso de diseño.

Refrigeración por conducción

Ecuación de conducción:

conduccion-ecuacion

\[ \Delta_T  = T_1 – T_2 = \frac{P\cdot t}{k\cdot A} \]

Y la resistencia térmica es:

\[ R = \frac{t}{k\cdot A}\]

Donde k es la conducción térmica (ºC/m·K), t es el grosor (thickness), \(T_x\) es la temperatura entre ambas interfaces y R la resistencia térmica en ºC/W.

En una PCB el que realmente conduce el calor es el cobre, no el FR4 ya que la conductividad térmica del FR4 es de 0.25 W/m·K (10 veces mejor conductor que el aire) mientras que la del cobre es de 360 W/m·K (1200 mejor conductor que el FR4).

En la conducción longitudinal o lateral del cobre, la resistencia del cobre de 1 oz de grosor (35 \(\mu m\)) es de 80 ºC/W. Para el FR4 de 1.6 mm es de 2500 ºC/W. Por tanto, la diferencia térmica entre el FR4 y el cobre es muy grande, siendo el FR4 un aislante térmico en comparación y se puede decir que todo el calor lateral o longitudinal es conducido por el cobre.

La conducción transversal (de cara top a bottom) de una PCB es buena. El cobre tiene muy poca resistencia y un FR4 de grosor 1.6 mm, tiene una resistencia de 64 ºC/W. El efecto del soldermask es despreciable frente a la resistencia del FR4, por lo que no vale la pena dejar areas de cobre descubierto para mejorar la disipación.

La resistencia térmica de una PCB en la dirección transversal (de cara top a bottom) es aproximadamente 60 ºC/W y una vía es aproximadamente 40 ºC/W, por lo que colocar varias vías térmicas en paralelo puede ser una buena solución para disminuir la resistencia térmica.

Refrigeración por radiación

En la refrigeración por radiación, hay que tener en cuenta la emisividad del material, el área de la superficie radiante, la temperatura del material y la temperatura de su entorno así como el ángulo sólido con el que la superficie ve algo más frío que ella.

Los metales pulidos radian menos que los rugosos, por eso el MacBook Pro es aluminio rugoso.

\[ P = \epsilon A_s \sigma \left(T_s^4 – T_{ent}^4 \right) f_v \]

Los plásticos opacos y la madera presentan valores altos de emisividad.

Refrigeración por convección natural

En la refrigeración por convección natural, hay que tener en cuenta el coeficiente de convección, el área, la temperatura de la superficie del objeto y la temperatura del fluido.

El coeficiente de convección \(h_{conv}\) depende de la longitud del cuerpo caliente a lo largo de la dirección de convección, de la presión atmosférica y de la diferencia de temperatura entre superficie y ambiente. Y un hecho muy significativo es que no depende del material.

\[ P = h_{conv} A_s \left(T_s – T_{fluido}\right) \]

Donde \(h_{conv}\) es el coeficiente de confección, \(A_s\) es la superficie en la que se transfiere calor, \(T_s\) es la temperatura de la superficie y \(T_{fluido}\) es la temperatura del fluido. Esta expresión es válida en flujo laminar, lo que en el aire es cierto a temperaturas moderadas (hasta 100 ºC) y cuando las dimensiones de la superficie radiante son pequeñas (hasta 0.5 m).

Refrigeración por convección forzada

Con la convección forzada se puede incrementar hasta un factor 10 la refrigeración por convección. El número de Reynolds (\(R_e\) adimensional) da información sobre qué tipo de fluido tengo.

Dependiendo de la geometría, la región entre flujo laminar y flujo turbulento varía.

Por ejemplo, dentro de un tubo:

  • Existirá flujo laminar si \(R_e < 2300 \).
  • Existirá flujo turbulento si \(R_e > 10^4 \).

Entre medias de ambos límites existe una frontera poco precisa, por lo que si se trabaja en esta región es recomendable elegir la peor opción para refrigerar. Es decir, flujo laminar. El flujo turbulento es mejor porque el aire va más rápido aunque puede ofrecer más resistencia debido a la fricción.

Para determinar el flujo de calor evacuado, se sigue la expresión:

\[ P = m’ \cdot c_p \cdot \left( T_{out} – T_{in} \right) \]

Con ella se puede determinar m’ (flujo de masa de aire) para saber qué flujo de aire debe mover el ventilador y \(c_p\) es el calor específico del aire.

La convección forzada se rige por la misma expresión que la convección natural. Sin embargo, ahora hay que calcular el coeficiente de convección en función del número de Nussel (Nu, adimensional). El número de Nussel se puede expresar como función del número de Reynolds y el número de Prandtl.

Para determinar la máxima temperatura del aire ambiente a la cual el sistema es posible disipar el calor generado:

  1. Determinar el flujo de aire a mover para refrigerar una potencia P (m³/s).
  2. Calcular los CFM del ventilador necesarios utilizando la densidad del aire.
  3. Calcular el número de Reynolds.
  4. A partir del número de Reynolds, determinar si el flujo es laminar o turbulento. Laminar: Re < 2300. Turbulento: Re > 10⁴. Entre media, escoger peor caso: laminar.
  5. En función del tipo de flujo, calcular el número de Nusselt.
  6. Con el número de Nusselt, calcular el coeficiente de convección \(h_{conv}\).
  7. Con el \( h_{conv} \), calcular la máxima temperatura del aire del ambiente.

Con la altitud varía la densidad del aire, con lo que el flujo de masa (flujo volumétrico) también.

Si el ventilador se pone a la entrada del sistema, podremos filtrar el aire, aumentará la fiabilidad del ventilador por trabajar con aire fresco pero el calor que genera se añadirá a la carga del sistema.

Si ponemos el ventilador a la salida, el ventilador vivirá menos, no prevendrá que entre aire sucio pero no añadirá calor adicional al sistema.

Los componentes más críticos deben colocarse junto a la entrada de aire y los menos críticos y los que consuman mucha potencia, deben ubicarse a la salida (entendiendo críticos como sensibles a variaciones de temperatura). Hay que buscar la mínima resistencia que los componentes mecánicos y electrónicos oponen al flujo del aire. Buscar que la convección natural ayude y no se oponga a la forzada. Poner en serie dos ventiladores aumenta la presión y hacerlo en paralelo, aumenta el flujo de aire.

Si conocemos la dirección en la que se moverá el aire, disipador de extrusión. Si no, tipo pin-fin.

El convertidor push-pull trabaja en el primer y tercer cuadrante. Es decir, el transformador se magnetiza y se desmagnetiza en un periodo de trabajo. Está compuesto por una especie de inversor que convierte la tensión continua en «alterna» utilizando dos transistores y un rectificador de onda completa (transformador con toma intermedia y dos diodos) y un filtro paso bajo.

En este conversor tenemos 4 periodos de trabajo:

  1. \(0<t<D T_s\): S1 ON, S2 OFF
  2. \(D T_s<t<\frac{T_s}{2}\): S1 OFF, S2 OFF
  3. \(\frac{T_s}{2}<t<\frac{T_s}{2} + D T_s\): S1 OFF, S2 ON
  4. \(\frac{T_s}{2} + D T_s<t< T_s\): S1 OFF, S2 OFF

Intervalo 1: \(0<t<D T_s\): S1 ON, S2 OFF

Tensión en el inductor

Haciendo el KCL en la malla 1 del primario, obtenemos:

\[ -V_i – v_{p1} = 0 \Rightarrow v_{p1} = – V_i \]

La tensión es negativa respecto a la referencia definida, por tanto la corriente irá en sentido contrario. La corriente «sale del punto», por tanto al otro lado del transformador «entrará por el punto». Esto hará que el diodo D1 no pueda conducir, quedando en circuito abierto mientras que el diodo D2 sí conducirá.

Teniendo en cuenta la relación de transformación:

\[ v_{s_2} = – \frac{N_{s2}}{N_{p1}} V_i \]

donde \(N_p = N_{p1} + N_{p2}\) y \(N_s = N_{s1} + N_{s2}\), en el que normalmente \( N_{p1} =N_{p2}  \) y \(N_{s1} = N_{s2} \) .

La tensión en el inductor:

\[ V_L = -v_{s_2} – V_o = \frac{N_{s2}}{N_{p1}} V_i – V_o \]

Corriente en el inductor

\[ V_L = L \frac{di_L}{dt} = \frac{N_{s2}}{N_{p1}} V_i – V_o \]

Si despejamos el diferencial de la corriente e integramos:

\[ i_L = I_{L_{min}} + \frac{1}{L} \left( \frac{V_i}{N_{ps}} – V_o \right) t  \]

Corriente de magnetización

\[ i_{sw_1} = i_{mg} + \frac{i_L}{N_{ps}}\]

\[ i_{mg} = – I_{mg_{max}} + \frac{V_i}{L}t \]

\[ i_{mg}(0) = – I_{mg_{max}}\]

\[ i_{mg}(DT_s) =  I_{mg_{max}} =  I_{mg_{max}} + \frac{V_i}{L}DT_s \]

Intervalo 2: \(D T_s<t<\frac{T_s}{2}\): S1 OFF, S2 OFF

push-pull-intervalo-2

El flujo en el transformador (la corriente magnetizante) y la corrente en la inductancia del filtro de salida son variables de estado y por tanto no admiten discontinuidades. En el primario, puesto que ningún transistor conduce, este devanado está abierto y por lo tanto su corriente es nula (recuérdese que \(L_m\) no es más que un modelo para considerar la magnetización del núcleo, no debe confundirse \(i_m\) con una corriente real que circula por el primario).

En el secundario, la situación es más sutil, pero todo el problema se reduce a determinar qué diodos conduncen (esto es, \(D_1\), \(D_2\) o ambos a la vez) la corriente del inductor de salida.

Supongamos que \(D_1\) continua conduciendo y que \(D_2\) permanece bloqueado, es decir, únicamente conduce la mitad del secundario que está en serie con \(D_1\). Sabemos que la corriente en el inductor de salida y la corriente magnetizante del transformadr no adminten discontinuidades, pero además son variables independientes. Si se reduce la inductancia magnetizante al secundario y \(D_2\) no conduce, el resultado es similar a conectar dos inductancias en serie con condiciones iniciales de corriente distintas, lo que provocaría la sobretensión. Con los dos diodos en conducción, las inductancias magnetizantes y de filtro no están en serie y por lo tanto sus condiciones iniciales pueden ser cualesquiera.

La ecuación de la fuerza magnetomotriz dice:
La fuerza magnetomotriz se puede expresar como el producto del número de vueltas de cualquier devanado por la corriente magnetizante referida al devanado en cuestión y es igual a la suma de las corrientes si son entrantes en los «puntos» del transformador o la resta de las corrientes salientes de los puntos de cada toma, multiplicadas por su numero de vueltas correspondiente.

\[ \sum_{j=1}^{n} N_j i_j = N_1 \cdot i_1 = N_2 \cdot i_2 = … = N_n i_n = \epsilon \]

donde \( \epsilon\) es la fuerza magnetomotriz (que se define como \(F = N \cdot I\) y cuyas unidades son amperios-vuelta o Av).

Es decir, si tenemos un transformador con varias tomas, como es el caso, cada toma aportará un determinado flujo magnético dentro del núcleo del transformador. Según nuestro modelo del transformador utilizamos una inductancia ficticia que simula la corriente de magnetización. Para poder calcular la corriente que pasa en cada una de estas inductancias de magnetización, es necesario aplicar la ecuación de la fuerza magnetomotriz.

La ecuación de la fuerza magnetomotriz en el intervalo anterior es:

\[N_{s2} i_{D2}  – N_{p1} i_1 = N_{p1} i_{m} \]

En la que \( N_{p1} i_{m} \) no puede variar brucamente. Al hacer \(i_1 = 0\), debe de aparecer otra corriente (saliendo por el punto) que mantenga el transformador magnetizado, de manera que \(i_m\) no cambie bruscamente.

\[ N_{s2} i_{D2} – N_{s1} i_{D1} = N_{p1} i_m \]

Por tanto, se demuestra que \(D_1\) y \(D_2\) tienen que estar activos.

Para calcular la tensión en el inductor hay que tener varias cosas en consideración. Para que pueda circular corriente en el sentido en que lo hace \(i_{D1}\) e \(i_{D2}\), \(v_{s_1} = -v_{s_2}\) ya que la tensión del nodo común debe ser mayor que el del extremo del transformador. Por tanto:

\[v_{s_1} = -v_{s_2}\]

Debido a que el número de espiras entre el común y los extremos es el mismo, y el flujo magnético que pasa por ambas espiras es el mismo:

\[v_{s_1} = v_{s_2}\]

La única solución para que \(v_{s_1}\) y \(v_{s_2}\) cumplan estas condiciones es que \(v_{s_1} = 0\) y \(v_{s_2} = 0\).

De esta manera, el circuito equivalente en el secundario es:

push-pull_circuito-equivalente-intervalo-2

En el que \(V_L = -V_o\).

Corriente en el inductor

\[ V_L = L \frac{di_L}{dt} = -V_o \]

Si despejamos el diferencial de la corriente e integramos:

\[ i_L = I_{L_{max}} – \frac{1}{L} V_o \left( t- DT_s \right) t  \]

Corriente de magnetización

\[ v_s = 0 = v_p = v_{p_1} = 0 = L_{mg} \frac{di_{mg}}{dt} \]

\[ i_{A2} = \frac{i_L}{2} – \frac{i_{mg}}{2}N_{12} \]

\[ i_{A1} =\frac{i_L}{2} – \frac{i_{mg}}{2}N_{12} \]

\[ i_{mg_{1s}} = \frac{N_{p1}}{N_s} I_{mg_{max}} = \frac{N_{ps}}{2} I_{mg_{max}} \]

Intervalo 3: \(\frac{T_s}{2}<t<\frac{T_s}{2} + D T_s\): S1 OFF, S2 ON

En este caso,

\[ v_{p2} = V_i\]

Ya que esta tensión es positiva, la corriente entrará por el punto en el primario y saldrá por el punto en el secundario. De manera que el diodo D1 estará en activa y diodo D2 estará en corte.

Del factor de transformación:

\[ v_{s_1} = \frac{N_{s_1}}{N_{p_2}} V_{p_2} = \frac{N_{s_1}}{N_{p_2}} V_{i} \]

Por lo que la tensión en el inductor es directamente:

\[ V_L = \frac{N_{s_1}}{N_{p_2}} V_{i} – V_o \]

Corriente en el inductor

La forma de onda de la corriente es exactamente igual que en el intervalo 1.

Corriente de magnetización

\[ i_{mg} = I_{mg_{max}} – \frac{V_i}{L_{mg}} \left(t – \frac{T_s}{2} \right) \]

\[ i_{sw_2} = \frac{1}{N_{ps}} i_L – i_{mg} \]

Intervalo 4: \(\frac{T_s}{2} + D T_s<t< T_s\): S1 OFF, S2 OFF

El intervalo 4 es exactamente igual al intervalo 2 ya que ambos transistores están de nuevo en OFF. Por tanto,

\[ V_L = -V_o \]

Corriente en el inductor

La forma de onda de la corriente es exactamente igual que en el intervalo 2.

Corriente de magnetización

\[ i_{mg} = – I_{mg_{max}} \]

\[ i_{mg_s} = \frac{N_{p1}}{N_s} \left( – I_{mg_{max}} \right) \]

\[ i_{A1} = \frac{I_L}{2} – \frac{N_{ps}}{2} I_{mg_{max}} \]

\[ i_{A2} = \frac{I_L}{2} + \frac{N_{ps}}{2} I_{mg_{max}} \]

Función de transferencia

push-pull-tension-inductor

La media de la tensión en un inductor debe ser 0, ya que de lo contrario la corriente del inductor aumentaría indefinidamente. Forzando esta condición obtenemos la función de transferencia del convertidor:

\[ \left< V_L \right> = 0 = \frac{1}{\frac{T_s}{2}} \left[ \left( \frac{V_i}{N_{ps}} – V_o \right)DT_s – V_o \left( \frac{T_s}{2} – D T_s \right) \right] \]

\[ 0 =  D \frac{V_i}{N_{ps}} – V_o D-  \frac{V_o}{2} – D V_o \]

\[ V_o = \frac{2}{N_{ps}}DV_i \]

Donde \( 0 < D < 0.5 \) ya que no pueden estar ambos transistores en conducción simultaneamente.

Corriente máxima y mínima en el inductor

De los intervalos 1 y 2 se han derivado las expresiones de la corriente en el inductor. Sin embargo, estas estaban en función de la corriente máxima y mínima que circula al final y principio de cada intervalo.

Para obtener la definición de corriente máxima y mínima tenemos que resolver un sistema de ecuaciones. Una de las ecuaciones nos la da la corriente media en el inductor y la otra, el rizado de la corriente en el inductor.

Corriente media en el inductor

corriente-inductor-push-pull

Del circuito, aplicando el KCL podemos obtener que:

\[ i_L = i_c + I_o \]

Si calculamos el nivel medio de esta expresión:

\[ \left< i_L \right> = \left< i_c + I_o \right> = \left< i_c \right> + \left< I_o \right> = \left< I_o \right> = I_o\]

\( \left< i_c \right> = 0\) porque el nivel medio de la corriente en un condensador debe ser nulo por definición.

De la figura de la corriene en \( i_L \) podemos definir de manera alternativa el nivel medio de la corriente como:

\[ \left< i_L \right> = \frac{1}{\frac{T_s}{2}} \cdot \frac{T_s}{2} \frac{I_{L_{max}} + I_{L_{min}}}{2} = \frac{I_{L_{max}} + I_{L_{min}}}{2}\]

Por tanto, uniendo ambas expresiones obtenemos la primera de las ecuaciones del sistema:

\[I_o = \frac{I_{L_{max}} + I_{L_{min}}}{2}\]

Para la otra, definimos la corriente máxima (o mínima indistintamente) en función de la mínima (o máxima respectivamente). Para ello, decimos que \(I_{L_{max}} \) es \( I_{L_{min}}\) más el incremento de la corriente en ese intervalo, cosa que podemos hacer ya que conocemos la pendiente de la corriente (ver apartados anteriores).

\[ I_{L_{max}} = I_{L_{min}} + \frac{1}{L} \left( \frac{V_i}{N_{ps}} – V_o \right) D T_s \]

O del mismo modo:

\[ I_{L_{min}} = I_{L_{max}} – \frac{1}{L}  V_o \left( \frac{T_s}{2} – D T_s \right) \]

Despejando \( I_{L_{max}} – I_{L_{min}} \)

\[ I_{L_{max}} – I_{L_{min}} = \frac{1}{L} \left( \frac{V_i}{N_{ps}} – V_o \right) D T_s \]

Por tanto:

\[\left.\begin{matrix}
I_{L_{max}} + I_{L_{min}} = 2I_o \\
I_{L_{max}} – I_{L_{min}} = \frac{1}{L} \left( \frac{V_i}{N_{ps}} – V_o \right) D T_s
\end{matrix}\right\}\]

Resolviendo el sistema obtenemos que:

\[ I_{L_{max}} = I_o + \frac{1}{2L} \left( \frac{V_i}{N_{ps}} – V_o \right) D T_s \]

\[ I_{L_{min}} = I_o – \frac{1}{2L} \left( \frac{V_i}{N_{ps}} – V_o \right) D T_s \]

De \( I_{L_{min}} \) podemos calcular el límite de la conducción continua:

\[ I_{L_{min}} = I_o – \frac{1}{2L} \left( \frac{V_i}{N_{ps}} – V_o \right) D T_s = 0\]

Límite de la conducción continua:

\[ I_o = \frac{1}{2L} \left( \frac{V_i}{N_{ps}} – V_o \right) D T_s \]

 Corriente de magnetización en todo el periodo

push-pull-corriente-magnetizacion-total

Como este convertidor magnetiza el núcleo de manera simétrica, podemos afirmar que \(I_{{mg}_{min}} = – I_{{mg}_{max}}\).

Para determinar el valor de \(I_{{mg}_{max}}\), hemos demostrado que en el primer periodo la tensión del primario es \(-V_i\). Por tanto, la inductancia de magnetización tiene aplicada una tensión de \(-V_i\), lo que fuerza a que haya una variación de corriente, tal y como vemos en la figura de arriba. En esta figura se ha tomado la dirección de la corriente de magnetización en sentido que va desde la toma central del transformador hasta la el otro extremo del transformador. Es por eso que tal y como vemos en la figura, al aplicar una tensión negativa la corriente aumenta.

La expresión de la corriente en este periodo será:

\[ i_{mg} = I_{{mg}_{min}}+ \frac{V_i}{L}t\]

En el instante \(t = DT_s\), el valor de la corriente es el máximo:

\[ I_{{mg}_{max}}= I_{{mg}_{min}} + + \frac{V_i}{L}DT_s\]

Como sabemos que \(I_{{mg}_{min}}= – I_{{mg}_{max}}\):

\[ I_{{mg}_{max}} = -I_{{mg}_{max}}  + \frac{V_i}{L}DT_s\]

\[ 2I_{{mg}_{max}} = \frac{V_i}{L}DT_s\]

\[ I_{{mg}_{max}} = \frac{V_i}{2L}DT_s\]

Si tenemos el valor del factor de inductancia \(A_L\) del núcleo, el número de vueltas del primario, la frecuencia de conmutación, el ciclo de trabajo y la tensión de entrada podemos calcular el valor máximo de la corriente de magnetización teniendo en cuenta que \( L_1 = \frac{N^2_1}{\mathfrak{R}} = N^2_1 A_L\). Por tanto:

\[ I_{{mg}_{max}} = \frac{V_i}{2 N^2_1 A_L}DT_s\]

Rizado de tensión de salida

Para calcular el rizado de tensión en la salida vamos a considerar la aproximación de que el rizado de corriente se va por el condensador y que el valor medio de la corriente se va por la carga:

\[ i_L \approx i_c + I_o\]

\[ i_c = i_L – I_o\]

La corriente en un condensador es \(i_c = C \frac{dv_c}{dt} \).

Por tanto, si integramos esta expresión obtenemos la tensión en bornes del condensador.

\[ v_c = \frac{1}{C} \int{i_c dt} \]

\[\left.v_c\right|^{v_{c,max}}_{v_{c,min}} = \frac{1}{C} \int_{t_1}^{t_2} i_c dt\]

El resultado de esta integral es igual al área marcada en naranja. Como es un triángulo, el área es \(\frac{1}{2} \text{base · altura} \) donde la base es la diferencia entre \(t_1\) y \(t_2\). Si vemos en el dibujo, es \(\frac{T_s}{4}\). Por tanto:

\[ \left.v_c\right|^{v_{c,max}}_{v_{c,min}} = \frac{1}{C} \frac{1}{2} \frac{T_s}{4} \frac{I_{riz}}{2} = \frac{1}{C} \frac{I_{riz}}{16 f_s} \]

 

Análisis en conducción continua

  • Entre \(0 \leq t \leq D T_s\) Q: ON. \(i_1\) magnetiza el núcleo del transformador, por lo que genera un flujo magnético en el transformador. Este flujo magnético induce una tensión \(v_2\) que fuerza a que \(i_2\) tenga el sentido contrario al definido en el dibujo, es decir \(i_2 < 0\). Sin embargo, el diodo bloquea esta corriente, por que el diodo queda en circuito abierto (\(i_2 = 0\)).

En este caso, la tensión en el primario \(v_1\) es igual a \(V_i\).

\[v_1 = V_i = L_m \frac{di_{m1}}{dt} \Rightarrow \frac{di_{m1}}{dt} = \frac{V_i}{L_m} > 0 \rightarrow i_{m1} \text{ crece} \]

Despejando el diferencial de la corriente magnetizante del transformador:

\[ \int{\frac{di_{m1}}{dt} dt}= \int{\frac{V_i}{L_m} dt}\]

\[i_{m1}(t) = \frac{V_i}{L_m}t + I_{m_{min}} \]

\[v_2 = \frac{N_2}{N_1}v_1 = \frac{N_2}{N_1}V_i \]

\[ v_C = V_o\]

\[i_1 = i_{m1} + i_2 \cdot \frac{N_2}{N_1} = \left\{ i_2 = 0 \right\} = i_{m1}\]

\[i_2 = 0\]

\[i_c = C \frac{dv_0}{dt}  = – I_o \Rightarrow \frac{dv_0}{dt} = -\frac{I_o}{C} \rightarrow V_o\text{ decrece}\]

  • Entre \(DT_s < t < T_s\). Q: OFF. El transistor está en circuito abierto y la corriente \(i_1 = 0\). La energía almacenada en el núcleo del transformador fuerza la conducción del diodo de salida debido a la corriente en sentido contrario que se induce de acuerdo con la ley de Lenz.

\[v_1 = \frac{N_1}{N_2}v_2 = L \frac{di_{m1}}{dt} = – \frac{N_1}{N_2} V_o \]

Despejando el diferencial de la corriente magnetizante del transformador:

\[ \int{\frac{di_{m}}{dt} dt} = \int{-\frac{N_1}{N_2}\frac{V_o}{L}dt} \]

\[ i_{m1}(t) = -\frac{N_1}{N_2} \frac{V_o}{L}\left( t-DT_s\right) + I_{m_{max}} \]

\[v_2 = -V_o \]

\[ v_c = V_o\]

\[ i_2 = i_c + I_o\]

\[ i_c = i_2 – I_0 = C \frac{dv_c}{dt} \]

De esta expresión, podemos despejar el diferencial de la tensión en el condensador. Solo es posible que el condensador se esté cargando en este periodo (\((1-D)T_s\)), por tanto, \(i_2 – I_o\) debe ser mayor que 0.

\[ \frac{dv_c}{dt} = \frac{i_2 – I_o}{C} > 0 \rightarrow v_c \text{ crece}\]

\[i_2 = \frac{N_1}{N_2}i_{m1}= \frac{N_1}{N_2} \left(-\frac{N_1}{N_2} \frac{V_o}{L}(t-DT_s) + I_{m_{max}} \right) = -\left(\frac{N_1}{N_2}\right)^2 \frac{V_o}{L}(t-DT_s) + \left(\frac{N_1}{N_2}\right)^2 I_{m_{max}}\]

\[i_m(t)=\left\{\begin{matrix}\frac{V_i}{L}t+I_{m_{min}} &\text{si }0 < t < DT_s\\ -\frac{N_1}{N_2}\frac{V_o}{L}(t-DT_s)+I_{m_{max}} &\text{si }DT_s < t < T_s\end{matrix}\right. \]

Cómo calcular \(I_{2_{max}}\),  \(I_{2_{min}}\), \(I_{1_{max}}\) y  \(I_{1_{min}}\)

Para calcular \(I_{2_{max}}\) e \(I_{2_{min}}\) es necesario resolver un sistema de ecuaciones. La primera ecuación surge de considerar el nivel medio de \(i_2\).

\[ \left< i_2 \right> = \left< i_c + I_o \right> = \left< I_o \right> = I_o\]
Como en media la corriente del condensador debe de ser 0 (de lo contrario la tensión en sus bornes tendería a infinito), obtenenos que el nivel medio de \(i_2\) es \(I_o\).
También podemos calcular el nivel medio de \(i_2\) como:

\[ \left< i_2 \right> =  \frac{1}{T_s}\frac{I_{2_{max}}+I_{2_{min}}}{2}\left(1-D\right)T_s  =\frac{I_{2_{max}}+I_{2_{min}}}{2}\left(1-D\right) \]

Por tanto, igualando ambas expresiones:

\[\frac{I_{2_{max}}+I_{2_{min}}}{2}\left(1-D\right) = I_o \]

Y reescribiéndola, tenemos la primera ecuación del sistema:

\[I_{2_{max}}+I_{2_{min}}= \frac{2\cdot I_o}{\left(1-D\right) } \]

Para la segunda hay que tener en cuenta que cuando Q=OFF, \(i_2\) es \(\frac{N_1}{N_2}\) veces la corriente \(i_{m1}\). Si recordamos, \(i_{m1}\) sale de plantear la ecuación de la tensión del primario \(v_1\):

\[v_1 = \frac{N_1}{N_2}v_2 = L \frac{di_{m1}}{dt}\]

Y integrando esta ecuación obtenemos:

\[ i_{m1}(t) = -\frac{N_1}{N_2} \frac{V_o}{L}\left( t-DT_s\right) + I_{m_{max}} \]

Por tanto,

\[i_2 = -\left(\frac{N_1}{N_2}\right)^2 \frac{V_o}{L}\left( t-DT_s\right) + I_{2_{max}} \]

Esta ecuación nos dice cómo es la pendiente de \(i_2\). Por lo que podemos definir \(I_{2_{min}}\) como \(I_{2_{max}}\) menos la pendiente de \(i_2\) durante el periodo \((1-D)T_s\):

\[ I_{2_{min}} = I_{2_{max}} -\left(\frac{N_1}{N_2}\right)^2 \frac{V_o}{L} \left(1-D\right)T_s\]

Si despejamos la expresión \( I_{2_{max}}-I_{2_{min}}\), obtenemos:

\[ I_{2_{max}} -I_{2_{min}} = \left(\frac{N_1}{N_2}\right)^2 \frac{V_o}{L} \left(1-D\right)T_s\]

Con lo que ya podemos resolver el sistema de ecuaciones:

\[ \left.\begin{matrix}
I_{2_{max}}+I_{2_{min}}= \frac{2\cdot I_o}{\left(1-D\right) } \\ I_{2_{max}} -I_{2_{min}} = \left(\frac{N_1}{N_2}\right)^2 \frac{V_o}{L} \left(1-D\right)T_s
\end{matrix}\right\} \]

Y de aquí despejamos:

\[ I_{2_{max}} = \frac{I_o}{1-D} + \left(\frac{N_1}{N_2}\right)^2 \frac{V_o}{2L_m}\left(1-D\right)T_s\]

\[ I_{2_{min}} = \frac{I_o}{1-D} – \left(\frac{N_1}{N_2}\right)^2 \frac{V_o}{2L_m}\left(1-D\right)T_s\]

Por último, teniendo en cuenta la ecuaciones que rigen el transformador, \(I_{1_{min}} = \frac{N_2}{N_1} I_{2_{min}}\) y \(I_{1_{max}} = \frac{N_2}{N_1} I_{2_{max}}\), por lo tanto:

\[ I_{1_{max}} = \frac{N_2}{N_1} \frac{I_o}{1-D} +\frac{N_1}{N_2} \frac{V_o}{2L_m}\left(1-D\right)T_s \]

\[ I_{1_{min}} = \frac{N_2}{N_1} \frac{I_o}{1-D} -\frac{N_1}{N_2}\frac{V_o}{2L_m}\left(1-D\right)T_s \]

También podemos escribir \(I_{1_{min}} \) e \(I_{1_{max}}\) en función de \(V_i\) sustituyendo \(V_o = \frac{N_2}{N_1}\frac{V_i D}{L}\).

\[ I_{1_{max}} = \frac{N_2}{N_1} \frac{I_o}{1-D} +\frac{V_i}{2L_m}D T_s \]

\[ I_{1_{max}} = \frac{N_2}{N_1} \frac{I_o}{1-D} -\frac{V_i}{2L_m}D T_s \]

Rizado de salida

Para calcular el rizado, hay que tener en cuenta la corriente del condensador ya que será el responsable de filtrar dicho rizado.

También vamos a considerar que la tensión de salida \(v_o\) está compuesta por la tensión DC y el rizado de la siguiente manera:

\[v_o = V_{o~DC} + v_{o~riz}\]

A priori ya podemos suponer, que cuanto mayor sea el valor de la capacidad C del condensador menor será el rizado.

rizado-tension-salida

Cuando Q=ON, \(i_c = -I_o\).

Por lo que podemos integrar la corriente del condensador en el primer intervalo:

\[ v_c = \frac{1}{C}\int_0^{DT_s}{i_c(t) dt} = \frac{1}{C} \int_0^{DT_s}{-I_o dt} = – \frac{1}{C} I_o D T_s\]

De aquí, obtenemos que la variación del rizado es:

\[\Delta V_{o~riz} = \frac{1}{C} I_o D T_s \]

También hay que considerar que debido a la ESR del condensador, habrá una fuga en corriente que no irá hacia la carga sino que se quedará en el condensador. Esta tensión es:

\[V_{o~riz~(ESR)} = I_{2_{max}} \cdot ESR \]

Análisis de conducción discontinua

En conversor Flyback entra en conducción discontinua cuando el núcleo magnético del transformador se desmagnetiza. Esto ocurre cuando \(I_{mg_{min}}\) o su equivalente reflejado en el secundario \(I_{2_{min}}\) es 0.

\[I_{2_{min}} = 0 = \frac{I_o}{1-D} – \frac{N_1^2}{N_2^2}\frac{V_o}{2L} \left( 1 -D\right) T_s \]

En el periodo \(0 \leq t \leq D T_s\) el núcleo se magnetiza pero la energía que almacena no es la suficiente para que pasado el segundo periodo todavía quede algo de densidad de flujo magnético en el núcleo (magnetización). Por eso en el momento T’ del segundo periodo \(DT_s < t < T_s\), la corriente \(I_2\) se hace 0. Como tampoco hay tensión aplicada sobre el primario, la tensión en primario y secundario es 0.

flyback-corriente_magnetizacion

Para sacar la función de transferencia del conversor Flyback en conducción discontinua debemos resolver un sistema de ecuaciones. La primera ecuación la podemos encontrar haciendo la media de la tensión en el primario y despejando \(D_2\).

flyback-vprimario

Como la media de la tensión en una bobina debe de ser 0, podemos encontrar la relación entre \(D_2\) y el resto de parámetros.

\[ \frac{1}{T_s} \left[V_i D T_s + \left(- \frac{N_1}{N_2} V_o D_2 T_s \right) \right] = 0 \]

\[ D_2 = \frac{V_i D}{N_{12} V_o } ~~~(1)\]

La otra ecuación la obtenemos de igualar la media de la corriente \(i_2\) con \(I_o\)

flyback-currents

\[ I_o = \frac{V_o}{R} = \frac{1}{T_s} \left( D_2 T_s \frac{1}{2} N_{12} I_{mg_{max}} \right)~~~(2)\]

Al estar en conducción discontinua, \(I_{mg_{max}} \) es directamente:

\[I_{mg_{max}}  = \frac{V_i}{L} D T_s ~~~(3)\]

Sustituyendo (1) y (3) en (2), obtenemos:

\[  V_o = \sqrt{\frac{R T_s}{2L}}D V_i = \sqrt{\frac{1}{2 \tau_s}} D V_i\]

En el que \(\tau_s\) es:

\[ \tau_s = \frac{L}{R T_s} \]

Por tanto, el conversor Flyback en conducción continua se comporta como un buck-boost en el que podemos conseguir tanto tensiones mayores como menores a la de entrada mientras que en conducción discontinua se comporta como un buck. Es decir, solo se pueden conseguir tensiones de salida menores a la de entrada.

Rizado de salida

En conducción discontinua el rizado de salida se calcula de la misma forma que en conducción continua, con la diferencia de que la corriente que pasa por el condensador ahora es menor. Por tanto, tanto el rizado debido a la capacidad como por la ESR es menor.

flyback-dcm-rizado_salida

Como ya sabemos, \( i_c = i_2 – I_o\). Y la diferencia de tensión entre dos tiempos \(t_0\) y \(t_1\) es:

\[ \Delta v_c = \frac{1}{C} \int_{t_0}^{t_1}{i_c~dt} \]

Al estar en conducción discontinua podemos obtener fácilmente la expresión analítica de \(i_2\):

\[ i_2 = I_{2_{max}} – \frac{N_1^2}{N_2^2} \frac{V_o}{L} \left(t-DT_s\right) \]

Donde \( I_{2_{max}} \) es:

\[ I_{2_{max}} = \frac{N_1}{N_2} \frac{V_i}{L} D T_s \]

De \(i_2\) podemos obtener cuándo la corriente se hace 0, es decir T’:

\[i_2 = I_{2_{max}} – \frac{N_1^2}{N_2^2} \frac{V_o}{L} \left(T’-DT_s\right)=0 \]

\[ T’ = \left( \frac{V_i}{N_{12}} + 1\right) \frac{DT_s}{V_o} \]

Por tanto, ya podemos calcular el rizado de tensión debido a la capacidad:

\[ \Delta v_c = \frac{1}{C} \int_{DT_s}^{ \left( \frac{V_i}{N_{12}} + 1\right) \frac{DT_s}{V_o}}{\left[I_{2_{max}} – \frac{N_1^2}{N_2^2} \frac{V_o}{L} \left(t-DT_s\right) \right]~dt} \]

O de manera más sencilla, teniendo en cuenta los periodos en los que \(i_c = -I_o\).

\[ \Delta v_c = \frac{1}{C}\left( \int_{0}^{DT_s}{i_c~dt} + \int_{T’}^{T_s}{i_c~dt} \right) = \frac{1}{C}\left( \int_{0}^{DT_s}{-I_o} + \int_{T’}^{T_s}{-I_o} \right) \]

\[ \Delta v_c = \frac{1}{C} \left(-I_o\right) \left( DT_s + T_s – T’\right) \]

\[ \Delta v_c = \frac{1}{C} \left(-I_o\right) \left[ D + 1 – \left( \frac{V_i}{N_{12}} + 1\right) \frac{D}{V_o}\right]T_s \]

transformador

De acuerdo con la ley de Faraday,

\[ v_1 = N_1 \frac{d\Phi}{dt} \]

\[ v_2 = N_2 \frac{d\Phi}{dt} \]

de lo que puede derivarse que:

\[ \frac{v_1}{v_2} = \frac{N_1 \frac{d\Phi}{dt}}{ N_2 \frac{d\Phi}{dt}}  = \frac{N_1}{N_2} \]

Por lo que el cociente entre espiras determina la relación entre las tensiones de los devanados.

Si se considera una reluctancia nula, es decir, un transformador ideal, la relación de corrientes es:

\[N_1 \cdot i_1 – N_2 \cdot i_2 = 0 \]

Si por el contrario la reluctancia no es nula y se tiene en cuenta el fenómeno de saturación:

\[N_1 \cdot i_1 – N_2 \cdot i_2 =  \mathscr{R} \cdot \Phi \]

La inductancia magnetizante vista desde el primario es:

\[\frac{N^2_i}{\mathscr{R}} = L_{m1} \]

 

coil

\[V_L(t) = L \frac{di(t)}{dt} \]

Si despejamos el diferencial e integramos:

\[\frac{di(t)}{dt} = \frac{V_L}{L}\]

\[\int{\frac{di(t)}{dt} dt} = \int{\frac{V_L}{L} dt}\]

\[ i(t) = \int{\frac{V_L}{L} dt} =  i(0) + \frac{V_L}{L}t \]

La variación de la corriente en el tiempo no puede ser instantánea, ya que de lo contrario habría un pico infinito de tensión en el inductor (\(v(t) = \infty\)).

\[ \frac{di(t)}{dt} \neq \infty \]

Si el valor de la inductancia L es grande, las variaciones de corriente en el inductor serán pequeñas, por lo que el inductor se podrá considera como una fuente de corriente.

En régimen permanente, el valor medio de la tensión en los extremos del inductor debe ser nulo, ya que de lo contrario la corriente en bornes del inductor aumenaría hasta el infinito.

Es decir, ya que:

\[ i(t) = \int_0^t{-\frac{v_L(t)}{L} dt} \]

si \(v_L(t)\) no tuviese una media nula, la integral de la tensión sería infinito, ya que solo sumaría.

Por tanto:

\[<v(t)> = \frac{1}{T} \int_0^T v(t) dt = 0\]